
M.J. Heat Mrrss Tmufcr Vol. 36. No. 17,pp.4215~220, IYY3 
Printed in Great Britain 

0017-Y310/93$6.00+0.00 
0 1993 Pergamon Press Ltd 

A simple inverse heat conduction method with 
optimization 

J. VOGEL,? L. SARA1 and L. KREJCi$ 

t Faculty of Mechanical Engineering, Czech Technical University, Karlovo n8mEsti 13, Prague 2. 
12 1 35 Czech Republic 

1 Institute of Thermomechanics, Academy of Sciences of the Czech Republic, DolejSkova 5, Prague 8, 
182 00 Czech Republic 

(Received 23 June 1992 and in final form 20 April 1993) 

Abstract-A simple numerical method for one-dimensional nonlinear inverse heat conduction problem 
solving based on finite difference principle is presented. Time-step size is variable and chosen in such a way 
ensuring optimal results. Numerical stability analysis is derived and stochastic error contributions to the 
solution quality and inversely computed distance influence are demonstrated. Simulated experiments using 

inexact data illustrate usability of the method 

INTRODUCTION 

THE BOUNDARY inverse heat conduction problem 
(BIHCP) deals with determining surface temperature, 
heat flux or heat transfer coefficient history from tem- 
perature readings inside the body. Numerous methods 
for the solution of such problems have been 
developed, many of them being based on the methods 
of Beck et al. [l] with least squares minimization 
and future temperatures utilization. There is another 
approach, namely, that of finite difference solution of 

Alifanov [2] while Backus and Gilbert [3] developed 
a method for qualitative sensitivity computing and 
determining solution exactness estimate. Hills et al. [4] 
used the latter method for 2D slab BIHCP solution. 
Alifanov et al. [5] describe the ‘iterative regularization’ 
method of ill-posed problems solution. An adaptive 
sequential method as a generalization of Beck’s func- 
tion specification method is developed in the paper of 
Flach and ozigik [6]. 

In the present paper, the optimization of finite 
difference solution with time-step estimation for time- 
dependent surface conditions and temperature-depen- 
dent properties is investigated. First, the stability 
analysis of solution is developed, then the effectiveness 
of time step control is demonstrated using tem- 
perature data measurement simulation. 

PROBLEM FORMULATION 

Governing equations of a direct heat conduction 
problem in material with constant density are as fol- 
lows : 

for a < x < b and 0 < t < t, (1) 

T(x,O)=T,(x) for adx<b (14 

for 0 < t d t,. (lb,c) 

While in the BIHCP formulation, temperature-depen- 
dent thermal properties, initial temperature and 

additional conditions (temperature readings) 

T(c, t) = f3(t), T(d, t) = fh(t) 

for 0 < t < t, (2a, b) 

are known and surface conditions 
(lb,c) are to be solved (see Fig. 1). 

f;, f2, equations 

L&e-dimensional body 

ndaty conditi 

T f---- Tt 1 

time time 

FIG. 1. Scheme of one-dimensional probe; from temperature 
readings in c, d we can establish temperatures in u, 6. 
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NOMENCLATURE 

c(T) specific heat [J kg ’ K ‘1 I: small number. stochastic error 

.?L 

euclidean norms i eigenvalues 
known functions [K] 1’ mass density. 

Fo Fourier number [ -1 
k(T) thermal conductivity [W m ’ K ‘1 
1 number of time divisions [ -1 
1, length [m] 

Subscripts 

c 
n1 time division [ -1 

end time 

i time [s] 
c exact solution 

T temperature [‘ C] 
i spatial index 

spatial coordinate [ml. 
i inverse solution 

.v 
0 initial temperature. 

Greek symbols 

Ll 

thermal diffusivity [m’ s ‘1 
constants determining type of Superscripts 
boundary conditions _ temperatures from preceding time 

6 relative inversely computed distance k iteration index 

WI 31 / 1 Ml,,, time step index. 

The BIHCP is solved as an initial value problem. 

The computing domain is divided into internal inter- 
val (c, d) and two external intervals (n, c), (d,h). 
Equation (1) is discretized with implicit formulation 

of finite difference method : 

where 

i=c,+l,__.. d-1, , T = Ti?_q- 
2 

and 

k -k ,i I 2 - 

Temperatures T, in interval (c, d)- --direct heat con- 
duction problem-are calculated from equations (3) 
with the use of traditional matrix solver and from 
known initial condition T(x, 0) for (’ < x < d and 
boundary conditions T(c, t), T(d, I) for 0 < f < t,. 

Temperatures in intervals (a, c) and (d, h)-inver- 
sely determined temperatures-are computed from 
equation (3), where we independently evaluate T, , 
and T,, , 

and solve in (a, c) and (L/, h) step by step (so-called 
space marching method). Equations (4), (5) are solved 
iteratively due to the non-constancy in k(T) and c(T) ; 
the end of iteration process being controlled by norm 

maxIT)“-Tl] <i: 

From these resolved temperatures. inside and on 
the surface of the body, we can reconstruct boundary 
conditions also for /J’,,~ # 0 (in equations (1 b, c))--it 
means solving the inverse problem for heat flux or 
heat transfer coefficient. 

STABILITY AND UNIQUENESS 

Alifanov [2] used the above-described method fat 
the linear stationary heat conduction equation with- 
out any stability analysis. Stability determination for 
nonlinear equations (4), (5) is not known, but linear 
equation stability analysis is possible. 

Instead of(l), a linear heat conduction equation is 

established 

iiT (2T 

With 9 = l/Fe = A.u’/(aAr) it is possible to write 
equation (4) as 

T, , -GJ+g)T,+T,., , =,qT (7) 

The exact solution of (7) from Berezin and Zhidkov 
[7] has the form 
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T, = c,l’, +c2$+pi (8) 

where c,l: +c& is a general solution of homo- 
geneous equation, and p’ is the particular solution of 
equation (7). Eigenvalues A,, i, can be obtained from 
the solution of characteristic equation 

AZ-(2+g)1+1 = 0. (9) 

Solution of homogeneous equation is stable, if 
max(li,I, l&l) < 1 andl, # I,,ifl, = 1,thestability 
condition has the form max (In,l, l&l) < 1; therefore 
from equation (9) it can be seen that numerical process 
is unstable for any value of g and the particular part 
of solution 

(ii) in external fields (a, c) and (d, b) we use equa- 
tions (4) and (5) respectively. For the different j 
(j= 1 , . . . , Z) we evaluate norm 

E, = 11 T2’b’m(a, t) - T20-“A’m(a, t) 11. (11) 

We are watching for a minimum of this norm E, of 
two successive solutions (with different time steps) 
and choose m = t,/2(‘- “At, for the norm minimum. 
Existence of a minimum ensures the optimal time-step 
(time-division) of the BIHCP solution. 

Norm E, = 11 T(a, t) - Ti(a, t) 1) of exact (prescribed) 
data in a, T(a, t) and inversely computed temperatures 
Ti(u, t) is evaluated for comparison. 

pi = -pA-IT,:, A = 
NUMERICAL EXPERIMENT CONDITIONS 

-(2+g) 1 

1 -_(2+gj 1 
. 

does not stabilize the process. 
From the physical point of view, it is possible to 

say that the direct heat conduction solution attenuates 
high frequencies in boundary conditions more quickly 
than the low ones while the inverse heat conduction 
solution amplifies high-frequency components in the 
signal and, for this reason, it is not possible to use 
BIHCP methods with very noisy experimental data. 

There are other problems connected with the 
uniqueness of boundary condition history recon- 
struction. It is possible to obtain solution only with a 
certain degree of approximation and this is why use 
of BIHCP in practice requires precise input (and from 
the view of stability also output) analysis. 

For the representative test cases copper, as material 
of computed one-dimensional body with thermo- 
physical properties p = 8930 kg m- 3, k(T) = 386.7 
-0.0078T W m-’ K-‘, c(T) = 377.26 

+O. 136T J kg- ’ K- ’ and length L = 0.04 m, is con- 
sidered. Time of measurement was chosen as t, = 3.2 s, 
the initial condition is T(x, 0) = 0°C and boundary 
conditions simulating measured temperatures for 
different cases are shown in Fig. 2. 

The parameters of finite difference schema (3) were : 
space division of (a, b) n = 80, time t, division 
m = 1280. Such a solution simulates the measurement 
without stochastic error (noise). Noise is subsequently 
generated by randomizer with the amplitude of 0. 1 %, 

1% and 2% of signal value. 
For the inverse conduction solution we choose 

n = 40, various m = { 5, 10,20,40,80, 160, 320,640) 
(At,,, = 0.005 s), while additional conditions (tem- 
perature readings in c,d) are taken from the above- 
described direct solution on (a, b). The distance from 
the surface (i.e. the length of (a, c) or (d, b)) equals 
10% of the total length L. 

NUMERICAL ALGORITHM 
RESULTS 

We know : 
First the stability of inverse reconstruction of 

T(c, t) = T2c’-“At+, t) boundary condition-No. 1 (Fig. 2) with exact data- 

T(d, t) = Tz(‘-“A’+d, t) 

for j= l,..., I and 0 <t < t, 

where At, is a minimal (basic) time step (time step of 
measurement) and every subsequent time step double 
the preceding one, lis a number of different time steps. 
Further we know L, c, d, t,, c(T), p and k(T). 

200.0 

VI 

We seek : 100.0 

T(a, t), T(b, t) with the time step 2(j-‘)At,,, (time 
t, division m = t,/2”-‘)At,,,) for minimal error of 
solution. 

Realization : 0.0 
(i) for the constant Ax and with the changing (doub- 

ling) time-step we solve temperatures inside the inter- 
val (c, d) from equation (3) ; 

0.0 1.0 2.0 3.0 t[s] 

FIG. 2. Boundary conditions (l-steady, 2-step, 3-sinus 
and 4-pyramid-like) for test cases. 



readings is numerically investigated. Time devel- arc shown in Fig. 3(b) and for inexact data with stoch- 
opment of surface temperature r(cl, t) reconstruction astic error i; < 10.01%1 in Fig. 3(c). It follows that 
for the two different time divisions nr is shown in Fig. the solution is stable and stability is cxpccted even if 
3(a). Phase trajectories for exact data and different III inexact data with larger error were used. 
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FIG. 3. (a) Estimated surface temperature for steady boun- 
dary condition and for exact data, S = 10%. (b) Phase trajec- 
tories of solution for different time divisions and for steady 
boundary condition and exact data, ~3 = 10%. (c) Inverse 
solution in phase space for steady condition with inexact 

data, 1~1 < O.Ol%, m = 640, 6 = 10%. 

The first of the test cases is a reconstruction ol 
boundary conditions No. :! (Fig. 2) from exact data c 
shown in Fig. 4(a). The process of optimal time+tcp 
choosing is illustrated in Fig. 4(b). Thcrc arc norms 

KC. E, for different time-interval (r,) divisions WI. Fat 
the first case an optimum in both norms is for 1~ = 3X. 
The situation for inexact data with stochastic crtot 
II:) < ().I?~ and I::1 < 1.0X, /EI < 2.0% is dcpictcd in 
Figs. 5(a) and 6(a) respectively. Optimal rn for these 
solutions are. according to Figs. S(b). 6(b), /H =: X0 
and 40. respcctivcly. 

The influence of distance of mvcrse temperature 
rcconslructinn on a quality of solution with Ii.1 5, 

0.1 a';) is shown by comparison of Figs. S(a).(b) 

(ri = lo+0 of Lj the optimal time division being 
nl = X0 and Figs. 7(a),(b) (6 = 20”ki of L). 171 = 40. 

(a) 300 

T [“Cl 

(b) 

E.,Ei 

10 

10 100 m 

FIG. 4. (a) Estimation of step surface temperature history. 
stochastic error ICI = O%, optimal time division m = 320, 
CC? = 10%. (II) Norms EC,& for test case 4(a) with minimum 

for rn = 320. 
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FIG. 5. (a) Estimation of step surface temperature history, 1.~1 < O.l%, 6 = IO%, optimum WI = 80. 
(b) Norms E,, E, for test case 5(a) with minimum for m = 80. 
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FIG. 6. (a) Estimation of step surface temperature history for 1,s < 1.0% and Is/ C 2%. respectively. 
6 = lo%, optimum M = 40. (b) Norms E,, E, for test cases 6(a) with minimum m = 40. 

(b) 
10000 

kaEi 

1 10 160 m 

FIG. 7. (a) Estimation of step surface temperature history for 1.~1 < O.l%, 6 = 20%, optimum m = 40. 
(b) Norms IT,, I?, for test case 7(a) with minimum m = 40. 
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(a) 
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(b) 

100 

JLEi 

10 100 m 

FIG. 8. (a) Estimation of sinus surface temperature history 
for /el < 1 .O%, fi = lo%, optimum m = 80. (b) Norms E,, E, 

for test case 8(a) with minimum M = 80. 

Reconstruction of sinus-like b.c. (Fig. 2. No. 3), 
with (~1 < 1 .O% and b = 10% of L, is on Figs. 8(a), (b) 
with optimum at m = 80. The results of computation 

for the same conditions (only with pyramid-like tem- 
perature history) on the surface (Fig. 2, No. 4) are 

illustrated in Figs. 9(a), (b). 

CONCLUSIONS 

A new variable time step method has been presented 
for the one-dimensional inverse heat conduction 
problem. The advantage of this algorithm is seen in 
its simplicity, computational efficiency and in a good 
ability to compute from data with small-amplitude 

(up to 2% of signal value) and high-frequency error 
(stochastic noise). 

FK;. 9. (a) Estimation of pyramid surface temperature his- 
tory for 1~1 < 1.0%, 6 = 10%. optimum nz = 40. (b) Norms 

E,. E, for test case 9(a) with minimum m = 40. 
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